CC读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

等效替代,放在工程实践领域,是一种很常见的设计与实现思路。

放在“强人工智能”,则需要切实的考虑清楚,人类,或者说人脑,其思维与认知行为究竟是一种怎样的过程。

“人会犯错误,计算机不会”,这并非是IT专家的调侃,而是严肃的事实。

迄今为止,人类创造出的一切计算机,小到功能孱弱的早期单片机,大到算力ZFlops级别的超级计算机,能够实现的功能,眼花缭乱,无以尽述,但归拢所有这一切功能,不难发现,其本质上完全是人类意志的延续。

这种延续,并不是说人类能轻轻松松的,做到计算机做出的一切。

而是原则上讲,从单片机、到巨型机所做的任何事,原则上讲,一旦脱离运行时间的限制,人类同样也能够完成。

不仅如此,这段话的真实含义,要比字面上呈现的更深刻:

要完成当今时代一切计算机所做的事,人类,但凡有足够长的时间,根本无需动用自身的思维、认知能力,只需有一副听指挥的身体,加上除“MOV、ADD、XOR……”之外一无所有的机器指令。

一旦意识到这点,便可以明白,为何当今时代的计算机,根本上讲,完全无法进行创造性、探索性的科学研究:

根据指令,摆弄一些数据,就能领悟客观规律,那简直就是在开玩笑。

要完成计算机所做的任何事,人类,根本无需动用智慧,这种原则性的判断,为研发组指出了一个关键点。

人类的智慧,与计算机的算力,如果说有什么本质上的差异,就是“出错”。

换成严谨的说法,就是基于细胞架构的模拟式人脑,能够引入一些出乎预料、无法预知的新变量。

而这一特性,在传统的电子计算机体系里,一概视为“干扰”而务必杜绝,否则便难以得到期望的准确运算结果,其突出成就,便是寻常人认识中的“计算机永不出错”。

撇开极小概率的宇宙射线、本底瑕疵等因素,的确,人类制造出的计算机,可以认为具有100%的可靠性,如果最终计算结果与事实不符,绝对是程序的设计、或者初始条件有问题,最终一定会追溯到人的身上。

计算一百次加法,计算机不会错,人也不会。

但是计算一百亿次加法,计算机不出错很寻常,人呢,根本就不可能一个不拉的全做对。

“人脑迟早会出错”的现象,长期以来,在计算机的永不出错面前自惭形秽,自愧不如,但反映到另一个层面,正是这种模拟式、并行式生化系统的“出错”,才让探索性、创造性的科学研究成为可能。

从已知,尝试推断未知,人类的一切科研活动,本质上都未脱出这样的形式。

而这正是计算机,至少到目前为止的计算机,始终做不到的。

计算机能做的工作,譬如说,计算,总归是一项人类交托的任务,是先由人来判断该问题是否有解,如果有,具体的算法是什么,然后将数据与算法交给计算机的逻辑电路去处理,所得结果也要由人去理解,阐述。

即便像AIASG这样的系统,能自主生成程序,实质上,也不过是将一些类似的已有成果排列组合,解决那些早已被人解决过的问题。

路,还是人走出来,计算机只不过是更快的再走一遍,两遍,三遍;

就算再走无数遍,仍没有任何创新。

取而代之的崭新思路,“敛散算法”,则是根据一定的初始条件,在算法的每一步,尝试尽可能多的展开分支,引入额外的发散量,当然这种做法,很快就会让计算量暴增,所以还需要进行“收敛”,通过同样包含随机性的判据,迅速“砍”掉大量无意义的分支。

表面上看,这一先发散、后收敛的做法,与向系统中引入随机变量,并无本质区别,实质上也可以粗糙的这样认为。

区别则在于,算法步骤中引入的变量,并非随机数,而是来自于初始状态库的一切既有知识。

那么就是在穷举吗,似乎是,只不过为了应对完全穷举的计算量暴涨,而必须在每一步进行判断、预计与猜测,将无意义的分支完全消除。

具体到某一个分支,其是否有意义,判断起来也并不容易,此外还要引入额外的随机性,将某些“看起来”无意义的分支,移入另一个线程继续追踪。

这一做法,能避免收敛策略错杀那些切实可行、却不符合既有知识体系的分支。

“敛散策略”的核心思想,是建立在传统计算机的运行之上,此外再加入“关联扰动”与“随机性”,利用这种方式,尝试让AI具备创造性、探索性思维。

这种体系,一开始在验证可行性时,需要的资源量并不太大。

但可想而知,倘若投入到实际运行中,这样的系统必然耗费巨大,哪怕只用来解决一些粗浅的问题,都需要比传统计算机更多的算力,当然,倘若其真能具备“强人工智能”的特质,巨大的投入也是值得的。

“强人工智能”的第一台实验机,所需算力,设计指标大约在1PFlops。

以今天的计算机技术水平,这种规模的算力并不难提供,不过,1PFlops算力能支持的思维、认知,可以达到多高的水平,仅从理论模型出发并无从得知,一切还要在初号机完成并上线运转一段时间后,才能得出结论。

按项目组的计划,从初号机开始,“强人工智能”就应该具备一定的自我演化能力,这种特质,也更接近于人脑的状态。

那么,假以时日,这样的机器能演化到什么状态,就更需要时间来给出答案。

自从掌控一个大区,直到今天,1495年才启动“强人工智能”的研发工作,这种进度怎么说也并不算快。

但在方然看来,情况还好,他并不认为所有大区的管理员都和自己一样,能够洞悉“强AI”定义的内在矛盾,继而认识到,以现有的科学技术水平,人类其实是可以研发出某种程度的自主AI,进而窥破“思维”、“认知”活动的奥秘。

CC读书推荐阅读:末日降临,我修仙者身份藏不住了快穿:男主,开挂吗倾覆之塔罗素我有外挂三千量子缠结 末世狂飙春秋人生之重合末日赘婿七级凶兽围城,我驾驶机甲救场末日修复师远征军,从收编川军团开始末日圣兵三国之四世三公末日回溯:破晓重生之战星空战国英雄传废土求生:小小拾荒,拿捏!末世诸禽星际萌宝厨仙妈咪末日游戏,我能无限抽卡!末日游戏全球降临灵幻小猫之旅2来自末世中的黎明万灵主君暗世沉浮录末世:兔子带我打丧尸星际猎人随身带着星际争霸一等公民末世:失业的我在农村生存明日之始我家水库真没巨蟒啊卡盒抽卡,不靠概率星战之世末世掠夺商人崩乱世界:幸存者快穿之总有人想攻略我煌煌天道无上剑宗绑定三界闪送系统后我暴富了谎言之咒塔拉影视世界大闲人逍遥小邪仙穿成稀有雌性,兽夫们宠上天我在外星人面前耍大刀末日最强赘婿在末日中漫步,直到世界尽头裂变圣纪:虚空之主的崛起星际侠盗有点甜末日小民我,后土血裔,轮回诸天诸天降临大逃杀
CC读书搜藏榜:快穿女王只想走事业线指环王风云末世降临,开局获得千本樱诸天新时代自我以下,众生平等怪谈模拟器随波逐流的宝可梦神级大法师星际第一菜农三皇吾弟星海争锋:我有一艘神灵级星舰!末世:开局获得S级异能时间零星际监狱长Alpha队友想统治世界[末世]洪荒之混元古蛇末日降临狂扫万亿位面物资末日不囤物资之创世传说无人驾驶帝国重生末世大佬有空间快穿系统:极品男神任我撩异世界骷髅兵的奇幻冒险谭召唤佣兵从留级开始的星际生活星穹觉醒全球轮回:开局花光十个亿从九叔世界开始玩农场沙暴末世:我储水十万亿吨!秦时明月之墨狩天下风云之邪气凛然快穿之女配又逆袭快穿女配天生大佬系统之传奇缔造者英雄联盟之点券召唤师色香味纨绔毒医小狼狗的追妻攻略星际之海盗变上将夫人快穿宿主她又美又甜末日游戏:负状态缠身,我被萌系少女救赎空间重生:我被末世大佬盯上了群星之海末世:我这丧尸进化不科学末世来临,我觉醒了异能!诸天之轮回直播这个快穿有点甜冰封桃花源:囤了一堡垒女神!星际萌宝厨仙妈咪坞界穿越末世:刚毕业的我成了两界巨头末世小人物
CC读书最新小说:鲛人女配觉醒,毛茸茸大佬争着宠欧皇海上求生?反派他妹只想苟命谁让她误闯废土的!在末日游戏里当农场主惊悚:国家把我F级天赋玩出花!恶毒男配都在我的修罗场末世恶毒女配?我靠十倍返还躺赢穿越后我靠蘑菇干翻虫子只想安静种个田,全员逼我当大佬天灾囤货,我靠毛茸茸在末日躺赢末日降临:从修仙界回来后无敌了末世灾变:我靠收割反派暴富穿成乱世寡嫂,靠空间南迁搞基建穿进男频文,我在末世捡垃圾!我的电脑里有个神级文明牺牲的他与保护的她星河苍芒幻厅恶毒向导不装了,全员火葬场吧末世:我捡的废物都成了神明大佬海洋求生:我靠无限抽卡带飞祖国末世列车,我靠预言读档成为榜一梦里穿越十二宫植物成珍稀?而她一天能种一千亩渣女摆烂后,五个前男友扯头花星际:被迫继承疗养院的餐厅星际娇软雌性,被六S大佬强绑定我在末世被营销成神无限副本:告白后我被邪神盯上了快穿:绿茶大佬今天又被钓了渣雌死遁五年回归,黑化父子爱惨病弱美人在诡异世界封神克系末日摆摊,邪神被我喂成萌宠穿成残次品?全星际大佬嗜我成瘾天才俱乐部雄多雌少,我靠木系异能风生水起星际写小说,雄兽们跪求我更新末日求生:我靠农场系统堆满粮仓兵家镇万界末世种田求生:捡个崽崽开农场我在末日盖房子快穿:硬核宿主玩转三千世界穿成稀有向导,误入哨兵修罗场末世海上求生,在灯塔建造度假村生育值0?兽世大佬们全是我榜一荒野求生:毛茸茸同居手册乙游对象非人类,各个为我修罗场恶雌娇又欲,五个兽夫缠欢上瘾抽卡逆袭后,五个未婚夫悔哭了恶女快穿:一不小心就成了万人迷