CC读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

2014年,人工智能领域正处于深度学习的快速发展时期,但在训练深层神经网络时,仍存在一些无法绕过的核心难题,其中“梯度消失”和“梯度爆炸”问题尤其突出。

当马库斯和林枫的对话逐渐转向这些人工智能瓶颈时,他们自然聊到了这个话题。

对于人工智能涉及到的梯度消失和梯度爆炸这个问题,对于前世就从事人工智能方面工作的林枫来说,他自然是不陌生。

梯度消失和梯度爆炸是神经网络训练中常见的问题。

了解梯度消失和梯度爆炸首先要了解神经网络。

简单说,神经网络是一种模仿人脑工作原理的计算模型。

它由很多“神经元”组成,这些神经元分成多层,数据会从一层传到另一层,最终得到一个结果。

训练神经网络的过程就是不断调整这些神经元之间的“连接强度”,让网络的输出越来越接近我们想要的结果。

为了调整神经网络中的这些连接强度,我们需要用到一种叫“梯度”的东西。

简单来说,梯度就是用来指引我们“往哪里走”的方向,就像你爬山时要知道往哪边是上坡、哪边是下坡。

我们通过“梯度”来知道哪些参数需要调整,从而让网络的表现变得更好。

那“梯度消失”和“梯度爆炸”又是什么呢?

假设你在玩一个滑滑梯,当你站在滑梯的最高处,往下滑时,你能很快感受到速度在增加,因为坡度很大。

但是,如果滑到快要到底部的地方,坡度变得很小,你几乎就感觉不到滑动的速度了。

这里的“坡度”就像是“梯度”——当坡度变小,滑动的速度也变小。

在神经网络中,类似的事情也会发生。

如果我们给网络很多层,它们之间的梯度会越来越小,传到前面几层时,梯度几乎“消失”了。这就是“梯度消失”问题。

梯度太小,无法有效调整那些神经元的连接强度,网络的训练就会变得非常困难。

想象你在爬一个大山,山的坡度越来越平,最终你几乎感受不到自己在上升了,这时你很难再判断该怎么继续往上爬。

在神经网络里,梯度消失的问题就是这种感觉,网络不知道该如何继续改进。

而梯度爆炸又是另外的一个极端。

假设这次你站在一座非常陡的悬崖边,一不小心就滚下去了!

因为坡度太陡了,你的速度变得非常快,失控了。

在神经网络中,这种情况也被称为“梯度爆炸”

当梯度太大时,参数的调整会变得过于剧烈,网络的学习变得不稳定,甚至会导致训练失败。

这就像你在陡峭的悬崖边滑落,一下子失去了控制。

网络的参数变化过大,导致结果变得很不稳定,甚至完全错误。

概括地说:

梯度消失就像在一座越来越平的山坡上,梯度变得很小,神经网络不知道该怎么调整,进而学习变得很慢,甚至无法进步。

梯度爆炸就像从悬崖边滚下去,梯度变得很大,网络的学习变得过于剧烈,结果会非常不稳定,训练过程变得不可控。

这两个问题经常会出现在深层神经网络中。

而这也是马库斯所要倾诉的困扰。

“说起来,最近的研究还卡在了‘梯度消失’的问题上。”马库斯苦笑着说道,靠在沙发上,“我们在训练一些更深层次的神经网络时,发现模型一旦超过一定的深度,反向传播算法中的梯度会逐渐趋近于零,根本无法有效更新权重。深度越大,梯度就越容易消失,整个网络的学习效率大幅下降。”

马库斯知道林枫硕士是麻省理工学院的计算机硕士,因此也就全都用专业术语表述了。

对于这些林枫当然能听明白,非但能听明白,而且作为一个资深的人工智能从业人员。

林枫也清楚知道马库斯面临的难题。

林枫对AI的发展也有所了解,涉及到梯度问题在2014年是深度学习研究中的一个巨大挑战。

甚至可以说解决不了梯度问题就很难有真正的深度学习,也就不会有后来的人工智能成果的一系列井喷。

林枫心说,自己这是一不小心站在了技术发展的最前沿了吗?

不得不说,这种举手投足之间就能影响时代命运的感觉是真的无比美妙。

“梯度消失的问题一直存在,尤其是深层网络。梯度爆炸倒是相对好解决,但梯度消失会直接导致学习过程停滞不前。”林枫沉思片刻,补充道,“这不仅是你们实验室的问题,也是整个领域的瓶颈。反向传播的基本原理决定了,当信号在网络中层层传递时,梯度的变化会以指数级缩小。”

马库斯脑海中泛起了大大的问号,梯度爆炸问题好解决吗?

他怎么觉得梯度爆炸问题也挺麻烦的?

不过聊天本来就是求同存异,既然林同样认为梯度消失难以解决就够了。

马库斯也没纠结为什么林说梯度爆炸容易解决,而是继续就梯度消失发表观点说道:“是啊,哪怕有了ReLU(修正线性单元)激活函数的引入,虽然能在一定程度上减轻梯度消失,但对深层网络还是不够。”

林枫想了想,说道:“你们有考虑过改进网络结构吗?”

CC读书推荐阅读:宝可梦修改器开局分家,真少爷一家悔哭了医笑倾城脑海里飘来一座废品收购站我的纯情女上司踏星陆隐极品家丁弃妃,你又被翻牌了!韩娱之灿冷冰冰的战神王爷堵门求我疼疼他系统大人太帅气重生七零:肥妻要翻身女帝的现代生活喝醉后,女神让我忘了她帝国总裁霸道宠人到中年,觉醒每日结算系统傲世玄医女帝直播攻略暴徒出狱重生:大帝归来炼神丹!御神兽!废材大小姐竟是绝世帝女青云宏图我家大佬是神兽玩家超正义只有怪兽可以吗废柴召唤师:逆天小邪妃隐主龙玉圣龙图腾冰冷总裁未婚妻绝品高手混花都重生的李峰青梅有点酸,竹马你别闹超强打工仔村花太凶猛!我的六个姐姐,由我来守护!极品仙尊之高高在下豪门重生之撩夫上瘾闪婚厚爱:陆少宠妻无下限有妖气客栈天亮了,就不需要灯塔了都市修仙从摆摊开始太初灵境尊龙出狱送王船超级科技从无线充电系统开始重生60:我靠打猎让全家致富我的宝藏男神藏不住了古镇奇谭重生国民男神:爵爷,求宠爱!我有九千万亿舔狗金
CC读书搜藏榜:海贼王之最强冰龙皇上非要为我废除六宫邢先生的冷面女友战国混沌剑神的猴子猴孙们独享一吻成灾:帝少的77次锁情诸神来犯,我在现代重演神话神级狂医在花都都市之最强战神奶爸逍遥修真少年空间之归园田居重生之妃王莫属女导演的爱情电影重生后,我在都市杀疯了重生,我就是回来当厨神的湛少的替婚新妻韩娱之魔女孝渊迷彩红妆公主爱妻你别跑两界真武暗影谍云偏执首席放过我爱如星辰情似海百万调音师:我只好亲自上台了!祸害娱乐圈,你说自己是正经人?都市之邪皇狂少这个傀儡师有点那啥重生娱乐圈之女王至上乡村疯子致富路墨守陈规狂龙下山退休后她只想在娱乐圈养老重生九零恶婆婆商女谋夫回2001陪你长大我在梦里逐步成神变成女孩子,将高冷千金养成病娇亲情凉薄我转身自立门户我的世界,又要毁灭了重生后休了王爷重回1976,下乡当知青御膳房的小娘子重回七七种田养娃霞光升起金牌宠妃(系统)绯闻男神:首席诱妻成瘾我是导演,却拿着演员的技能我的师傅慢半拍邪医修罗:狂妃戏魔帝异世倾心
CC读书最新小说:我有小姨管后院,你们有吗莫欺中年穷,情报系统助我成为首富下山后才发现,这孽徒强的过分!我于人间无敌,镇守边关十万年我家病娇女仆的占有欲有点强四合院:截胡系统开局躺赢离婚后摊牌了,我修仙的!都市炼宝传奇港片:曹老板,专嚯人家墙角重生变成白毛萝莉,解锁傲娇系统牛冲天邻居姐姐请不要打扰我四合院之文艺人生离婚后,我的神豪游戏成真了老爸,你也重生了?九霄玄天神帝权力争锋神级纨绔偶遇村花洗白白,被当成流氓下山后,我成了国民男神你出轨在先,我和学姐领证你哭什么装失忆找初恋,我走你哭什么?重生77,这个怨种我不当了误入五哈,从此进军文娱圈!初与末的故事1全民:觉醒虫族主宰,一秒孵一虫!重生1979:开局成为卖炭翁重生:这一世成为至尊重生80:打猎喂饱小娇妻兵王重生七零年:开局白得美娇妻尘渊启示录神农传承:我的农业天赋觉醒了开局复刻校花神级天赋,她反手提剑上门网游:开局掠夺进阶天赋体修的乐园之旅世界版本更新:战姬召唤师地皮继承:请叫我天景之主!我在女子监狱修仙,出狱便无敌高考后,美女接我回家继承家产全能仙医我一长生者,强亿点点太合理了开局碰瓷白富美,解锁神眼当大佬穿越后,我有一个无敌义父一夜变身女神谋我家产,别怪我不讲武德重生79:开局截胡五品叶俢行从搬砖开始美女明星都想吃一口的内娱第一帅重生10:从娱乐圈开始杀穿全世平凡躯壳下的呐喊